Microbial Community Structure of a Leachfield Soil: Response to Intermittent Aeration and Tetracycline Addition
نویسندگان
چکیده
Soil-based wastewater treatment systems, or leachfields, rely on microbial processes for improving the quality of wastewater before it reaches the groundwater. These processes are affected by physicochemical system properties, such as O2 availability, and disturbances, such as the presence of antimicrobial compounds in wastewater. We examined the microbial community structure of leachfield mesocosms containing native soil and receiving domestic wastewater under intermittently-aerated (AIR) and unaerated (LEACH) conditions before and after dosing with tetracycline (TET). Community structure was assessed using phospholipid fatty acid analysis (PLFA), analysis of dominant phylotypes using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE), and cloning and sequencing of 16S rRNA genes. Prior to dosing, the same PLFA biomarkers were found in soil from AIR and LEACH treatments, although AIR soil had a larger active microbial population and higher concentrations for nine of 32 PLFA markers found. AIR soil also had a larger number of dominant phylotypes, most of them unique to this treatment. Dosing of mesocosms with TET had a more marked effect on AIR than LEACH soil, reducing the size of the microbial population and the number and concentration of PLFA markers. Dominant phylotypes decreased by ~15% in response to TET in both treatments, although the AIR treatment retained a higher number of phylotypes than the LEACH treatment. Fewer than 10% of clones were common to both OPEN ACCESS
منابع مشابه
Jeq50395 1160..1169
Aeration improves the capacity of leachfields to decontaminate and reduce the nutrient load of wastewater. To gain a better understanding of the effects of aeration, we examined the faunal and microbial communities of septic system leachfield soil (0–4 and 4–13 cm) using replicated (n 5 3) mesocosms that were actively aerated (AIR) or unaerated (LEACH). Protozoa were 40 to 140 times more abunda...
متن کاملStructure and Composition of Leachfield Bacterial Communities: Role of Soil Texture, Depth and Septic Tank Effluent Inputs
Although groundwater quality depends on microbial processes in the soil treatment area (STA) of onsite wastewater treatment systems (OWTS), our understanding of the development of these microbial communities is limited. We examined the bacterial communities of sand, sandy loam, and clay STAs at different depths in response to septic tank effluent (STE) addition using mesocosms. Terminal restric...
متن کاملEffects of aeration on water quality from septic system leachfields.
We conducted a pilot-scale study at a research facility in southeastern Connecticut to assess the effects of leachfield aeration on removal of nutrients and pathogens from septic system effluent. Treatments consisted of lysimeters periodically aerated to maintain a headspace O(2) concentration of 0.209 mol mol(-1) (AIR) or vented to an adjacent leachfield trench (LEACH) and were replicated thre...
متن کاملA Review on Impact of E-waste on Soil Microbial Community and Ecosystem Function
The ever increasing pile-up of electronic waste in dumping sites, especially in developing countries such as China, Pakistan, India and several African countries, might have caused a significant alteration in the microbial community of the contaminated sites. This change in the microbial population may have significant impact to the soil ecology function. The major pollutants of electronic wast...
متن کاملA Review on Impact of E-waste on Soil Microbial Community and Ecosystem Function
The ever increasing pile-up of electronic waste in dumping sites, especially in developing countries such as China, Pakistan, India and several African countries, might have caused a significant alteration in the microbial community of the contaminated sites. This change in the microbial population may have significant impact to the soil ecology function. The major pollutants of electronic wast...
متن کامل